Grade 5 Mathematics

Transitional Curriculum
Revised 2012

Blackline Masters

Louisiana Department of Education
Unit 1, Activity 1, Place Value Chart

Name: _________________________ Date: ______________

<table>
<thead>
<tr>
<th>Millions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hundred</td>
<td>ten millions</td>
<td>millions</td>
<td></td>
</tr>
<tr>
<td>millions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thousands</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hundred</td>
<td>ten thousands</td>
<td>thousands</td>
<td></td>
</tr>
<tr>
<td>thousands</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ones</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hundreds</td>
<td>tens</td>
<td>ones</td>
<td></td>
</tr>
</tbody>
</table>
Unit 1, Activity 4, Addition and Subtraction Self-awareness Chart, Page 1

Name: _________________________ Date: _______________

<table>
<thead>
<tr>
<th>Word/Phrase</th>
<th>+</th>
<th>√</th>
<th>−</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altogether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decrease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instructions:

1. Rate your understanding of each word with either a “+” (understand well), a “√” (some understanding), or a “−” (don’t know).
2. As you complete activities during this unit, revisit your chart and fill in examples and definitions in your own words.
3. Your goal is to have all plus signs at the end of the activities with appropriate examples and accurate definitions.

<table>
<thead>
<tr>
<th>Word/Phrase</th>
<th>+</th>
<th>√</th>
<th>−</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem Prompt: It is your first day of work at the U. S. Census Bureau. They were impressed with your interview and believe you have the mathematical skills to proof the Census report before it is printed and distributed to the public. They have assembled a Louisiana team to perform the task, and you are one of the members. First, you’ve been asked to check the population change in the “Change” column to make sure the change in population for each region from 2000-2010 is correct. Then, you will give the total population for the entire United States in the year 2010. In addition to this task, you are asked to find the population change for the state of Louisiana and enter that information in the table. You will work with your team in order to complete these tasks.

<table>
<thead>
<tr>
<th>State Region</th>
<th>Population</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 2000</td>
<td>Year 2010</td>
</tr>
<tr>
<td>Northwest</td>
<td>53,594,378</td>
<td>55,317,240</td>
</tr>
<tr>
<td>Midwest</td>
<td>64,392,776</td>
<td>66,927,001</td>
</tr>
<tr>
<td>South</td>
<td>100,236,820</td>
<td>114,555,744</td>
</tr>
<tr>
<td>West</td>
<td>63,197,932</td>
<td>71,945,553</td>
</tr>
<tr>
<td>Total Population</td>
<td>281,421,906</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>4,468,976</td>
<td>4,533,372</td>
</tr>
</tbody>
</table>
Unit 1, Activity 8, U. S. Census Bureau Data Sheet with Answers

Name: ____________________________ Date: _______________

Problem Prompt: It is your first day of work at the U. S. Census Bureau. They were impressed with your interview and believe you have the mathematical skills to proof the Census report before it is printed and distributed to the public. They have assembled a Louisiana team to perform the task, and you are one of the members. First, you’ve been asked to check the population change in the “Change” column to make sure the change in population for each region from 2000-2010 is correct. Then, you will give the total population for the entire United States in the year 2010. In addition to this task, you are asked to find the population change for the state of Louisiana and enter that information in the table. You will work with your team in order to complete these tasks.

<table>
<thead>
<tr>
<th>State Region</th>
<th>Population</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 2000</td>
<td>Year 2010</td>
</tr>
<tr>
<td>Northwest</td>
<td>53,594,378</td>
<td>55,317,240</td>
</tr>
<tr>
<td>Midwest</td>
<td>64,392,776</td>
<td>66,927,001</td>
</tr>
<tr>
<td>South</td>
<td>100,236,820</td>
<td>114,555,744</td>
</tr>
<tr>
<td>West</td>
<td>63,197,932</td>
<td>71,945,553</td>
</tr>
<tr>
<td>Total Population</td>
<td>281,421,906</td>
<td>308,745,538</td>
</tr>
<tr>
<td>Louisiana</td>
<td>4,468,976</td>
<td>4,533,372</td>
</tr>
</tbody>
</table>
Whole Numbers
- hundreds
- tens
- ones

Decimals
- tenths
- hundredths
- thousandths

<table>
<thead>
<tr>
<th>Whole Numbers</th>
<th></th>
<th>Decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>hundreds</td>
<td></td>
<td>tenths</td>
</tr>
<tr>
<td>tens</td>
<td></td>
<td>hundredths</td>
</tr>
<tr>
<td>ones</td>
<td></td>
<td>thousandths</td>
</tr>
</tbody>
</table>
October 20, 2011

Tim Tenth
1234 Numeracy Lane
Number Town, Louisiana 12345

Dear Mr. Tenth:

We sincerely thank you for your interest in our company. We realize you have the ability to hold your place and you give the value of tenth to any digit that stands in your place. We also understand that you have the ability to adjust to having a value of more than nine in your place by giving the extra one tenth to the ones place.

We are sorry to inform you that we are not able to extend an offer to you at this time. We are pursuing a candidate who more closely fits our job requirements. Your value is a tenth of a whole. In order to adequately fill the position you would have to be 10 times the size you are currently. You are currently under-qualified to be considered a candidate at this time.

Although you do not qualify for this opening, we encourage you to watch the bulletins, television, newspaper and website ads for openings that may be applicable to your skills.

We wish you well in your job searching.

Sincerely,

Nancy Number-Scouter
Human Resource Manager
Unit 1, Activity 13, Number Lines

Name: _________________________ Date: _______________
Unit 1, Activity 15, Probable Comparisons

Name: _________________________ Date: _______________

Directions: Take turns spinning the Spinner. Use the decimals on this sheet to compare. When the comparison is spun, choose two of the three decimals in the set to compare and write the comparison. For example: If you spin “<,” you could write “10.02 < 10.03.” You must agree on the comparison. Move on to the next set of decimals taking turns until all sets are completed.

<table>
<thead>
<tr>
<th>Set</th>
<th>Comparison Spun</th>
<th>Decimals Chosen to Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.03, 10.02, and 10.030</td>
<td>less than <</td>
<td>10.02 < 10.03</td>
</tr>
<tr>
<td>35.689, 35.625, and 35.6890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.44, 3.49, and 3.490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.200, 10.20, and 10.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99, 2.85, and 2.850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21, 0.43, and 0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.4058, 52.5048, and 52.50480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.987, 101.698, and 101.6980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.304, 7.3400, and 7.340</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit 1, Activity 15, Probable Comparisons

<table>
<thead>
<tr>
<th>0.788, 0.971, and 0.971</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.212, 0.906, and 0.2120</td>
<td></td>
</tr>
</tbody>
</table>
Unit 1, Activity 15, Probable Comparisons Spinner

Greater Than >
Less Than <
Equal To =
Unit 2, Activity 1, Learning Log

Learning Log

of ______________________

Date:

Assignment:

Before and during reading, I made one or more predictions:

While reading, I discovered that my predictions were supported because of this evidence:

While reading, I discovered that my predictions were not supported because of this evidence:

Questions I had while reading:

New understandings discovered during reading:

New vocabulary discovered during reading:

Connections to other things I know about:

Reflections:
Vocabulary Self-Awareness Chart

<table>
<thead>
<tr>
<th>Word</th>
<th>+</th>
<th>√</th>
<th>-</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>lead paragraph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>headline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>byline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>photo caption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>headings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subheadings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indentations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bullets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vocabulary Card Template

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>in media res</td>
<td>In the middle of things</td>
<td>Starts the story in the middle of the action to involve the reader. Uses flashback.</td>
</tr>
<tr>
<td></td>
<td>The meeting agenda consisted of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before the controversial meeting, scientists had discovered....</td>
<td></td>
</tr>
</tbody>
</table>

Sample Vocabulary Card

<table>
<thead>
<tr>
<th>Definition</th>
<th>Characteristics</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>in media res</td>
<td>Starts the story in the middle of the action to involve the reader. Uses flashback.</td>
<td></td>
</tr>
</tbody>
</table>

Illustration

Book with a character inside.
Unit 2, Activity 10, Opinion Questions

Opinion Questions

1. Should students be required to wear uniforms to school?
2. Do students learn better working alone or in groups?
3. Is homework an important part of learning?
4. At what age should a teenager be allowed to go to the mall or a movie without a parent?
5. What age should a person be when receiving his/her first cell phone?
6. How much money should a ten year old receive in a weekly allowance?
7. Why do you think young people attempt to solve problems through violence?
8. Is it better to be an only child or have siblings?

Note: These are suggested questions. Other teacher-generated questions may be used to complete this activity, based upon relevance to students.
Support Your Opinion

Directions: As the teacher asks each question, write down your opinion on the topic. List two facts or details to support each opinion. Use words or phrases, such as *consequently* and *specifically*, to link your facts and details to your opinion.

<table>
<thead>
<tr>
<th>Opinion</th>
<th>Facts or Details to Support the Opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>#1 –</td>
</tr>
<tr>
<td></td>
<td>#2 –</td>
</tr>
<tr>
<td>2.</td>
<td>#1 –</td>
</tr>
<tr>
<td></td>
<td>#2 –</td>
</tr>
<tr>
<td>3.</td>
<td>#1 –</td>
</tr>
<tr>
<td></td>
<td>#2 –</td>
</tr>
<tr>
<td>4.</td>
<td>#1 –</td>
</tr>
<tr>
<td></td>
<td>#2 –</td>
</tr>
<tr>
<td>5.</td>
<td>#1 –</td>
</tr>
<tr>
<td></td>
<td>#2 –</td>
</tr>
<tr>
<td>6.</td>
<td>#1 –</td>
</tr>
<tr>
<td></td>
<td>#2 –</td>
</tr>
</tbody>
</table>
Three-Column Chart

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>DETAILS</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Classmates</td>
</tr>
<tr>
<td>Main Idea:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Response:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit 2, Activity 11, Characteristics of Opinion Articles

Characteristics of Opinion Articles

Directions: Place a check by each characteristic that can be found in your opinion article. Give an example of each characteristic.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Check</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A position, stance, or point of view is clearly stated in the opinion article.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideas are logically ordered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideas support the author’s purpose for writing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facts and details are used to support the author’s opinion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinions and reasons are linked using words, phrases, and clauses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A concluding statement supports the author’s opinion.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit 3, Activity 12, Timeline

Name: ____________________________ Date: ______________________

TIMELINE

Directions: Complete the timeline by identifying important events in a selected person’s life. First, record the name of the person selected, date and place of birth in the hexagon on the left. On each diagonal line describe briefly one event. Record the date and place of death in the hexagon on the right.
Unit 3, Activity 13, Questioning the Content Guide

Questioning the Content

Name: ________________________ Date: ___________________

<table>
<thead>
<tr>
<th>Goal</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate discussion.</td>
<td>What is the content about?</td>
</tr>
<tr>
<td></td>
<td>What is the overall message?</td>
</tr>
<tr>
<td></td>
<td>What is being talking about?</td>
</tr>
<tr>
<td>Focus on content’s message.</td>
<td>It says this, but what does it mean?</td>
</tr>
<tr>
<td></td>
<td>Why was this word used?</td>
</tr>
<tr>
<td>Link information.</td>
<td>How does that connect with what was said earlier?</td>
</tr>
<tr>
<td></td>
<td>What information has been added here that connects or fits in with</td>
</tr>
<tr>
<td></td>
<td>________________________?</td>
</tr>
<tr>
<td>Identify problems with understanding.</td>
<td>Does that make sense?</td>
</tr>
<tr>
<td></td>
<td>Does the timeline of events make sense?</td>
</tr>
<tr>
<td></td>
<td>Is this explained clearly? Why or why not?</td>
</tr>
<tr>
<td></td>
<td>What do we need to figure out or find out?</td>
</tr>
<tr>
<td>Encourage students to refer to the text</td>
<td>Did the content tell me that?</td>
</tr>
<tr>
<td>to find support for interpretations and</td>
<td>Did the source provide the answer to that?</td>
</tr>
<tr>
<td>answer to questions.</td>
<td></td>
</tr>
</tbody>
</table>
Autobiography Planning Sheet

Name ______________________________________ Date ____________________

<table>
<thead>
<tr>
<th>Information Prompts</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person’s name, date of birth, and birthplace</td>
<td></td>
</tr>
<tr>
<td>Personal Background (i.e., Where have you lived? How many people are in your family? Are you the oldest, middle, youngest child, or an only child? Do you have more than one generation living in your household?)</td>
<td></td>
</tr>
<tr>
<td>Personality Traits (What words best describe your personality? How do other people describe you?)</td>
<td></td>
</tr>
<tr>
<td>Significance (i.e., What is something that you have done that you think is important in relation to other people? What is one skill that makes you unique?)</td>
<td></td>
</tr>
<tr>
<td>Biggest Obstacle (i.e., What has been the most challenging event of your life? Why has it been so difficult?)</td>
<td></td>
</tr>
<tr>
<td>Favorite Phrase</td>
<td></td>
</tr>
</tbody>
</table>
Unit 3, Activity 16, Creating an Autobiography Mobile

Mobile Rubric

<table>
<thead>
<tr>
<th>Exceeds Expectations 5 points</th>
<th>Meets Expectations 3 points</th>
<th>Approaches Expectations 1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pictures reflect location of birth, location of school, location pertinent to life.</td>
<td>Pictures reflect some of the following: location of birth, location of school, location pertinent to life.</td>
<td>Pictures do not reflect important events in life of person.</td>
</tr>
<tr>
<td>Pictures are clear and easily visible.</td>
<td>Pictures are relatively clear and partially visible.</td>
<td>Pictures are not clear and easily visible.</td>
</tr>
<tr>
<td>Pictures relate to contributions of person.</td>
<td>Pictures relate somewhat to contributions of person.</td>
<td>Pictures do not relate to contributions of person.</td>
</tr>
<tr>
<td>Dates reflect major events or transition points in the person’s life.</td>
<td>Dates reflect either major and minor events or transition points in the person’s life.</td>
<td>Dates do not reflect major events or transition points in the person’s life.</td>
</tr>
<tr>
<td>Dates that are selected help to tell the story of the person’s life.</td>
<td>Dates that are selected aid in understanding most of the story of the person’s life.</td>
<td>Dates do not relate the story of the person’s life.</td>
</tr>
<tr>
<td>Dates are easily visible.</td>
<td>Dates are reasonably visible.</td>
<td>Dates are not easily visible.</td>
</tr>
<tr>
<td>Vocabulary or key words reflect contributions, quotes, personal phrases, achievements, characteristics, etc.</td>
<td>Vocabulary or key words moderately reflect contributions, quotes, personal phrases, achievements, characteristics, etc.</td>
<td>Vocabulary or key words do not reflect contributions, quotes, personal phrases, achievements, characteristics, etc.</td>
</tr>
<tr>
<td>Vocabulary or key words chosen reflect human qualities or traits emphasized in the report.</td>
<td>Vocabulary or key words chosen reflect to some extent the human qualities or traits emphasized in the report.</td>
<td>Vocabulary or key words chosen do not reflect human qualities or traits emphasized in the report.</td>
</tr>
<tr>
<td>Vocabulary is easily visible and readable.</td>
<td>Vocabulary is reasonably visible and readable.</td>
<td>Vocabulary is not easily visible and readable.</td>
</tr>
<tr>
<td>Maps indicate information that could not have been shown in another manner.</td>
<td>Maps reasonably indicate information that could not have been shown in another manner.</td>
<td>Maps fail to indicate needed information.</td>
</tr>
<tr>
<td>Maps are clear and easily visible.</td>
<td>Maps are moderately clear and visible.</td>
<td>Maps are not clear and easily readable.</td>
</tr>
</tbody>
</table>
Unit 4, Activity 12, Vocabulary Card Template

Vocabulary Card Template

Definition
A female in the story is in trouble and needs to be rescued.

Characteristics
- Princess captured by enemy
- Lady finds trouble along a journey
- Hero put in danger to rescue the damsel

Examples
- Herbert, the Timid Dragon
- The Princess Bride

Illustration

Vocabulary Card Sample
Identification of Theme Table

Name: ___________________________ Date: ___________________________

Directions: To begin, use the following table to record information about each short story title read. You may refer to the list created in your learning log. Next, determine the main theme of each story read. Locate and list one or more quotes to support your identification of theme.

<table>
<thead>
<tr>
<th>Title (List title and subtitle, if available)</th>
<th>Author (List last name, first name)</th>
<th>Theme (List the most important theme of the short story)</th>
<th>Quotes (List one or more quotes to support the identified theme. Include the page number on which you found the quote.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing and Contrasting Two Adventure Stories

<table>
<thead>
<tr>
<th></th>
<th>Story 1 -</th>
<th>Story 2 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note the similarities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and differences in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the main characters’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>physical descriptions,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thoughts, feelings,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>words, actions, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>response by and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>toward other characters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in the story.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where does each story</td>
<td></td>
<td></td>
</tr>
<tr>
<td>take place?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How does the setting of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>each story affect the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>development of events?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List the main events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from each story, noting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>similarities and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>differences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflicts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explain the internal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and external conflicts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of each story. Describe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>how the conflicts from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>each story are similar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and different.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Themes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>themes in the stories?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is different about</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the story themes?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit 5, Activity 7, Poetry Anticipation Guide

Name: ___________________________ Date: __________________

Poetry Anticipation Guide

Directions: After each statement, write “agree” or “disagree.” Then in the space provided, briefly explain your answer using examples from the displayed poems and poet biographies.

1. Poetry was one of the earliest forms of writing. _________

 Your reasons:

2. Poems tell stories, describe scenes, capture a mood, and can be humorous. _________

 Your reasons:

3. Poems can be placed in 3 main categories. _________

 Your reasons:

4. Narrative poetry tells a story. _________

 Your reasons:

5. Dramatic poetry describes a scene or a setting. _________

 Your reasons:

6. Shel Silverstein writes humorous poems. _____

 Your reasons:

7. All poems rhyme. _________

 Your reasons:

8. Poems are written in paragraphs. _________

 Your reasons:
Vocabulary Self-Awareness Chart

Name: ______________________________ Date:____________________

<table>
<thead>
<tr>
<th>Word</th>
<th>+</th>
<th>✓</th>
<th>-</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>word choice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imagery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>style</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Poetry Process Guide

Name: ___________________________ Date: ____________________

Directions: Select one poem. As you read, focus on the author’s use of literary devices. Record your notes and responses on this sheet while reading the poem. Finally, explain how the author’s word choice and use of imagery enhance the mood, tone and style of the poem.

- Word choice:

 Impact of word choice:

- Imagery:

 Impact of imagery:

- Mood:

 Impact of mood:

- Tone:

 Impact of tone:

- Style:

 Impact of style:

Explain the relationship between the elements you identified. How does this poem appeal to one’s senses?
Sample Vocabulary Card

Definition
Two unlike things are compared.

Characteristics
- Usually uses the words *like* or *as*.
- Create an image in the reader’s mind.

Examples
- You swim like a fish!
- This student is as quiet as a mouse.

Illustration
Unit 5, Activity 11, Figurative Language

Figurative Language

Name: ___________________________ Date: ______________________

Directions: Use poems and song lyrics that you have read to identify ten or more examples of each poetic device studied. Then describe how the literary devices and word choice affect the mood of the poem, appeal to the senses, and set the tone of the within a poem or song. Finally, ask peers to check whether you have identified the examples correctly and to provide feedback.

<table>
<thead>
<tr>
<th>List the poem titles below.</th>
<th>Simile</th>
<th>Metaphor</th>
<th>Personification</th>
<th>Hyperbole</th>
<th>Idioms</th>
<th>Adages</th>
<th>Proverbs</th>
<th>Visual Elements</th>
<th>Impact on mood, tone, and style</th>
<th>Correct Use (initialized by peer)</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poem # 1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Poem # 2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Poem # 3</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Poem # 4</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Poem # 5</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Poem # 6</td>
<td></td>
</tr>
</tbody>
</table>
Analyzing Poetry

Directions: Fill in the table below using your poem. Use the information that you gather to write a multi-paragraph composition to analyze your poem.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What is the title of the poem?</td>
</tr>
<tr>
<td>2.</td>
<td>Who is the author of the poem?</td>
</tr>
<tr>
<td>3.</td>
<td>Is this a narrative, lyric, dramatic, or humorous poem? Use text-based evidence to support your answer.</td>
</tr>
<tr>
<td>4.</td>
<td>List at least three different types of figurative language used in the poem. Then, cite the figure of speech from the poem, and explain how each relates to the meaning of the poem.</td>
</tr>
<tr>
<td>5.</td>
<td>What is the theme of this poem? Use at least 3 text-based pieces of evidence to support your answer.</td>
</tr>
<tr>
<td>6.</td>
<td>Are there any visual images that accompany the poem? If so, how do they contribute to the meaning of the text?</td>
</tr>
<tr>
<td>7.</td>
<td>Would you recommend this poem to a friend for reading? Use evidence from the poem to support your answer.</td>
</tr>
</tbody>
</table>
Vocabulary Self-Awareness Chart

Name: _____________________________________ Date:_____________________

<table>
<thead>
<tr>
<th>Word</th>
<th>+</th>
<th>√</th>
<th>-</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition
Having a sharp or uneven edge.

Characteristics
- Two-syllables
- Adjective
- Synonym – uneven surface
- Antonym – smooth surface

Examples
- Mountains
- Knife
- Alligator’s teeth

Illustration
Unit 6, Activity 10, Figurative Language in Novels

<table>
<thead>
<tr>
<th>Figurative Language</th>
<th>Example from Novel</th>
<th>Impact on Tone, Mood, and Style</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metaphor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperbole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idioms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit 6, Activity 16, Comparing and Contrasting Settings and Events

Name ________________________________ Novel ________________________________

Beginning of Novel

Setting -

Event -

Middle of Novel

Setting -

Event -

End of Novel

Setting -

Event -

Blackline Masters, ELA Grade 5
Unit 6, Activity 17, Comparing and Contrasting Novels in the Same Genre

Name _______________________________________ Novel ______________________________________

- **Beginning of Novel**
 - Characters
 - Setting
 - Event

- **Middle of Novel**
 - Characters
 - Setting
 - Event

- **End of Novel**
 - Characters
 - Setting
 - Event
Unit 2, Activity 1, Multiplication Properties

Name: _________________________ Date: _______________

<table>
<thead>
<tr>
<th>Word/Phrase</th>
<th>+</th>
<th>√</th>
<th>–</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative Property</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associative Property</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributive Property</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity Property</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Property</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions:

1. Rate your understanding of each word with either a “+” (understand well), a “√” (some understanding), or a “–” (don’t know).
2. As you complete activities during this unit, revisit your chart and fill in examples and definitions in your own words.
3. Your goal is to have all plus signs at the end of the activities with appropriate examples and accurate definitions.
Unit 2, Activities 2 and 9, Grid Paper

Name: ___________________________ Date: ____________

[Grid Paper Image]
Unit 2, Activity 4, Area Model of Multiplication

Name: _________________________ Date: _______________

Process Guide: Area Model for Two-digit by Two-digit Multiplication Problems

1. **Explore:** What would you do to find the area of this rectangle? \((Area = length \times width)\)

 \[
 \begin{array}{c}
 37 \\
 23 \\
 \end{array}
 \]

2. Multiplying the length by the width may be difficult to do in one step. Try breaking the rectangle into smaller rectangle sections. This will make the area less difficult to find.

 \[
 \begin{array}{c|c}
 30 & 7 \\
 \hline
 20 & 20 \\
 + & + \\
 3 & 3 \\
 \hline
 30 & 7 \\
 \end{array}
 \]

 Explain: Explain how the smaller rectangle sections of the whole are used to solve the problem.

3. **Understand:** Answer the following questions to better understand the process.

 a. How are the numbers 37 and 23 expressed? Why are they expressed that way?

 b. How can you use what you know about zeros in products to find the partial products in the smaller rectangles?
Unit 2, Activity 4, Area Model of Multiplication

c. Does it matter in what order you multiply to get the partial products? __________

d. What do you do with all of the products in each rectangle section to get the total product?

__

__

__

e. Does it matter in what order you add those products? __________

f. Conclusion: How is the Area Model of multiplication used to solve the multiplication?

__

__

4. Apply: Apply the Area Model of multiplication method to solve 49×34.

5. Reason: What is the largest product you can get when you multiply two 2-digit numbers? Explain your reasoning.

__

__

__
Unit 2, Activity 4, Area Model of Multiplication with Answers

Name: _________________________ Date: _______________

Process Guide: Area Model for Two-digit by Two-digit Multiplication Problems

1. **Explore**: What would you do to find the area of this rectangle? (*Area = length × width*)

2. Multiplying the length by the width may be difficult to do in one step. Try breaking the rectangle into smaller rectangle sections. This will make the area less difficult to find.

3. **Understand**: Answer the following questions to better understand the process.
 a. How are the numbers 37 and 23 expressed? Why are they expressed that way?

 They are expressed as tens and ones to make the multiplication easier.

 b. How can you use what you know about zeros in products to find the partial products in the smaller rectangles?

 Since 30 × 20 has 2 zeros, 20 × 7 has 1 zero, and 30 × 3 has 1 zero.

 c. Does it matter in what order we multiply to get the partial products? **No**
d. What do you do with all of the products in each rectangle section to get the total product?

We add all the products to get the total product.

e. Does it matter in what order you add the partial products? **No**

f. How is the area model of multiplication used to solve the multiplication?

The area of each of the 4 smaller rectangles is found. Then the 4 areas are added to find the total area.

4. **Apply:** Apply the area model of multiplication method to solve 49×34.

![Area Model Diagram]

5. **Reason:** What is the largest product you can get when you multiply two 2-digit numbers? Explain your reasoning.

Possible answer: The largest product you can get when you multiply two 2-digit numbers is a 4-digit number. You can add 2 (represents the first 2 digit factor) + 2 (represents the other 2 digit factor) to find the amount or you can multiply the largest 2-digit number 99 by 99 and see that its product is 4 digit.
Unit 2, Activity 6, Order of Operations

Name: _________________________ Date: _______________

Order of Operations Worksheet

Directions:
Perform the operations for each expression in correct order. Use the chart below to help.

<table>
<thead>
<tr>
<th>Parentheses</th>
<th>Multiplication/Division (left to right)</th>
<th>Addition/Subtraction (left to right)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8 + 16 ÷ 8</th>
<th>4 − (10 − 7)</th>
<th>(4 − 4) ÷ 3 + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ÷ 2 × 5</td>
<td>1 × 8 ÷ 4</td>
<td>60 ÷ (10 + 10)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>------------------------------------</td>
</tr>
</tbody>
</table>
Unit 2, Activity 6, Order of Operations with Answers

Oder of Operations Worksheet

Directions:
Perform the operations for each expression in correct order. Use the chart below to help.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8 + 16 \div 8$</td>
<td>10</td>
</tr>
<tr>
<td>$8 + 2$</td>
<td>10</td>
</tr>
<tr>
<td>$4 - (10 - 7)$</td>
<td>1</td>
</tr>
<tr>
<td>$4 - 3$</td>
<td>1</td>
</tr>
<tr>
<td>$(4 - 4) \div 3 + 1$</td>
<td>1</td>
</tr>
<tr>
<td>$0 \div 3 + 1$</td>
<td>1</td>
</tr>
<tr>
<td>$60 \div (10 + 10)$</td>
<td>3</td>
</tr>
<tr>
<td>$4 \div 2 \times 5$</td>
<td>10</td>
</tr>
<tr>
<td>2×5</td>
<td>10</td>
</tr>
<tr>
<td>$1 \times 8 \div 4$</td>
<td>2</td>
</tr>
<tr>
<td>$8 \div 4$</td>
<td>2</td>
</tr>
<tr>
<td>$60 \div 20$</td>
<td>3</td>
</tr>
</tbody>
</table>
Parentheses, Brackets, and Braces

Directions:
Perform the operations in correct order. Remember to start with the inside grouping symbol.

\[10 - (5 + 1) \times 3 \]

\[2 \times \left(\frac{6}{3} - (5 - 4) \right) \div 2 \]

\[3 \{ 5 - [(6 + 4) \div 5] \} \]

\[9 \div \{ 4 - [(3 - 1) \div 2] \} \]
Parentheses, Brackets, and Braces

Directions: Perform the operations in correct order. Use the chart below to help.

\[[10 - (5 + 1)] \times 3 \]
\[[10 - 6] \times 3 \]
\[4 \times 3 \]
\[12 \]

\[2 \times [6 \div 3 - (5 - 4)] \div 2 \]
\[2 \times [6 \div 3 - 1] \div 2 \]
\[2 \times [2 - 1] \div 2 \]
\[2 \times 1 \div 2 \]
\[2 \div 2 \]
\[1 \]

\[3 \{5 - [(6 + 4) \div 5]\} \]
\[3\{5 - [10 \div 5]\} \]
\[3\{5 - 2\} \]
\[3 \times 3 \]
\[9 \]

\[9 \div \{4 - [(3 - 1) \div 2]\} \]
\[9 \div \{4 - [2 \div 2]\} \]
\[9 \div \{4 - 1\} \]
\[9 \div \{3\} \]
\[3 \]

Process Guide: Rectangle Sections Method of Division Problems

Use the rectangle sections method of division to answer the following word problem: A passenger train travels the same distance every day. It travels 4,823 miles in a week. How far does the train travel each day?

1. **Explore**: To find out how many miles are traveled in a day, 4,823 will be divided by 7. To discover the answer to this problem, think of $4,823 \div 7$ as a rectangle with the area known along with the length of one side.

 \[
 \begin{array}{c}
 7 \\
 \hline
 4,823 \\
 \end{array}
 \]

2. **Step-by-Step**: Figure the length of the unknown side first. Determine how many zeros there will be in the factor for the first section. _______

 $7 \times$ what digit is close to 48 without going over? _______

 Multiply 7×600 and write the result under 4,823. Subtract to see how much is left over.

 _______ Build a new section with an area of 623.

 \[
 \begin{array}{c}
 600 \\
 \hline
 4,823 \\
 \hline
 -4,200 \\
 \hline
 623 \\
 \end{array}
 \]

 Determine how many zeros there will be in the factor for the section. _______

 $7 \times$ what digit is close to 62 without going over? _______

 Subtract to see how much is left over. _______ Build a new section with an area of 63.

 \[
 \begin{array}{c}
 600 \\
 \hline
 4,823 \\
 \hline
 -4,200 \\
 \hline
 623 \\
 \hline
 -560 \\
 \hline
 63 \\
 \end{array}
 \]
Unit 2, Activity 10, Rectangle Sections Method of Division

7 × what digit is 63? _________ Add the three new factors together. _________

\[
\begin{array}{ccc}
600 & + & 80 & + & 9 = 689 \\
4,823 & & 623 & & 63 \\
-4,200 & -560 & -63 & \hline
623 & 63 & \end{array}
\]

The total length of the unknown side is 689 units; which is the answer.

Explain: Explain how this method helps you see that you are finding an unknown factor when you divide.

3. **Apply:** Apply the rectangle sections method of division to divide 1,284 by 6. The process has been started for you.

\[
\begin{array}{c}
1,284 \\
6 \hline
\end{array}
\]

4. **Compare:** What is similar between this method and the digit-by-digit method you are used to? Will you know what the digit by digit method is?
Process Guide: Rectangle Sections Method of Division Problems

Use the rectangle sections method of division to answer the following word problem: A passenger train travels the same distance every day. It travels 4,823 miles in a week. How far does the train travel each day?

1. **Explore**: To find out how many miles are traveled in a day, 4,823 will be divided by 7. To discover the answer to this problem, think of \(4,823 \div 7\) as a rectangle with the area known along with the length of one side.

\[
\begin{array}{c|c|c}
7 & 4,823 \\
\hline
\end{array}
\]

2. **Step-by-Step**: Figure the length of the unknown side first. Determine how many zeros there will be in the factor for the first section. **2 zeros**

\[
7 \times \frac{600}{ \text{what digit is close to 48 without going over?} } = 6
\]

\[
\begin{array}{c|c|c}
600 & + & 80 \\
\hline
7 & 4,823 & 623 \\
\hline
-4,200 & & \\
\hline
623 & 63 &
\end{array}
\]

Determine how many zeros there will be in the factor for the section. **1 zero**

\[
7 \times \frac{623}{ \text{what digit is close to 62 without going over?} } = 8
\]

Subtract to see how much is left over. **63**

\[
\begin{array}{c|c|c|c}
600 & + & 80 & \\
\hline
7 & 4,823 & 623 & 63 \\
\hline
-4,200 & -560 & & \\
\hline
623 & 63 &
\end{array}
\]
Unit 2, Activity 10, Rectangle Sections Method of Division with Answers

7 × what digit is 63? 9 ______ Add the three new factors together. 689

<table>
<thead>
<tr>
<th></th>
<th>4,823</th>
<th>623</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-4,200</td>
<td>-560</td>
<td>-63</td>
</tr>
</tbody>
</table>

The total length of the unknown side is 689 units; which is the answer.

Explain: Explain how this method helps you see that you are finding an unknown factor when you divide.

Possible answer: This method helps to see that an unknown factor is being found because the model looks like a rectangle with the area and the length of 1 side known.

3. **Apply:** Apply the rectangle sections method of division to divide 1,284 by 6. The process has been started for you.

<table>
<thead>
<tr>
<th></th>
<th>1,284</th>
<th>84</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-1,200</td>
<td>-60</td>
<td>-24</td>
</tr>
</tbody>
</table>

4. **Compare:** What is similar between this method and the method you are used to?

Answers may vary. Students may find similarities in dividing each digit by each place value or may notice the dividends in each section are found in order to find the quotient.
Using the numbers in the table, write 2 problems for each method. The problems in part A should use 2 of the numbers and the problems in part B should use 3 of the numbers. You can use any operations in the problems, but make sure that you use addition, subtraction, multiplication, and division at least once in the 6 problems.

1. I would use mental math to work these problems.
 A. _______________
 B. _______________

2. I would use a calculator to work these problems.
 A. _______________
 B. _______________

3. I would use paper and pencil to work these problems.
 A. _______________
 B. _______________
Unit 2, Activity 15, Decimal Patterns Chart

Name: _________________________ Date: _______________

Directions:
Calculate the answers to the problems in the chart using a calculator. Multiply each number shown by 0.1. Divide each number by 10. Remember to look for patterns in the answers. The first row has been done for you.

<table>
<thead>
<tr>
<th>Number:</th>
<th>To multiply by:</th>
<th>Answer:</th>
<th>Number:</th>
<th>Divide by:</th>
<th>Answer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>× 0.1</td>
<td>1</td>
<td>10</td>
<td>÷ 10</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>× 0.1</td>
<td>9</td>
<td>9</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>× 0.1</td>
<td>8</td>
<td>8</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>× 0.1</td>
<td>7</td>
<td>7</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>× 0.1</td>
<td>6</td>
<td>6</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>× 0.1</td>
<td>5</td>
<td>5</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>× 0.1</td>
<td>4</td>
<td>4</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>× 0.1</td>
<td>3</td>
<td>3</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>× 0.1</td>
<td>2</td>
<td>2</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>× 0.1</td>
<td>1</td>
<td>1</td>
<td>÷ 10</td>
<td></td>
</tr>
</tbody>
</table>

Calculate the answers to the problems in the chart using a calculator. Multiply each number shown by 0.01. Divide each number by 100. Remember to look for patterns in the answers. The first row has been done for you.

<table>
<thead>
<tr>
<th>Number:</th>
<th>To multiply by:</th>
<th>Answer:</th>
<th>Number:</th>
<th>Divide by:</th>
<th>Answer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>× 0.01</td>
<td>0.10</td>
<td>10</td>
<td>÷ 100</td>
<td>0.10</td>
</tr>
<tr>
<td>9</td>
<td>× 0.01</td>
<td>0.09</td>
<td>9</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>× 0.01</td>
<td>0.08</td>
<td>8</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>× 0.01</td>
<td>0.07</td>
<td>7</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>× 0.01</td>
<td>0.06</td>
<td>6</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>× 0.01</td>
<td>0.05</td>
<td>5</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>× 0.01</td>
<td>0.04</td>
<td>4</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>× 0.01</td>
<td>0.03</td>
<td>3</td>
<td>÷ 100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>× 0.1</td>
<td>0.2</td>
<td>2</td>
<td>÷ 10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>× 0.1</td>
<td>0.1</td>
<td>1</td>
<td>÷ 10</td>
<td></td>
</tr>
</tbody>
</table>
Directions:
Calculate the answers to the problems in the chart using a calculator. Multiply each number shown by 0.1. Divide each number by 10.
Remember to look for patterns in the answers. The first row has been done for you.

<table>
<thead>
<tr>
<th>Number</th>
<th>To multiply by:</th>
<th>Answer:</th>
<th>Number</th>
<th>Divide by:</th>
<th>Answer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$\times 0.1$</td>
<td>1</td>
<td>10</td>
<td>$\div 10$</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>$\times 0.1$</td>
<td>0.9</td>
<td>9</td>
<td>$\div 10$</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>$\times 0.1$</td>
<td>0.8</td>
<td>8</td>
<td>$\div 10$</td>
<td>0.8</td>
</tr>
<tr>
<td>7</td>
<td>$\times 0.1$</td>
<td>0.7</td>
<td>7</td>
<td>$\div 10$</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>$\times 0.1$</td>
<td>0.6</td>
<td>6</td>
<td>$\div 10$</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>$\times 0.1$</td>
<td>0.5</td>
<td>5</td>
<td>$\div 10$</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>$\times 0.1$</td>
<td>0.4</td>
<td>4</td>
<td>$\div 10$</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>$\times 0.1$</td>
<td>0.3</td>
<td>3</td>
<td>$\div 10$</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>$\times 0.1$</td>
<td>0.2</td>
<td>2</td>
<td>$\div 10$</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>$\times 0.1$</td>
<td>0.1</td>
<td>1</td>
<td>$\div 10$</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Calculate the answers to the problems in the chart using a calculator. Multiply each number shown by 0.01. Divide each number by 100.
Remember to look for patterns in the answers. The first row has been done for you.

<table>
<thead>
<tr>
<th>Number</th>
<th>To multiply by:</th>
<th>Answer:</th>
<th>Number</th>
<th>Divide by:</th>
<th>Answer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$\times 0.01$</td>
<td>0.10</td>
<td>10</td>
<td>$\div 100$</td>
<td>0.10</td>
</tr>
<tr>
<td>9</td>
<td>$\times 0.01$</td>
<td>0.09</td>
<td>9</td>
<td>$\div 100$</td>
<td>0.09</td>
</tr>
<tr>
<td>8</td>
<td>$\times 0.01$</td>
<td>0.08</td>
<td>8</td>
<td>$\div 100$</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>$\times 0.01$</td>
<td>0.07</td>
<td>7</td>
<td>$\div 100$</td>
<td>0.07</td>
</tr>
<tr>
<td>6</td>
<td>$\times 0.01$</td>
<td>0.06</td>
<td>6</td>
<td>$\div 100$</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>$\times 0.01$</td>
<td>0.05</td>
<td>5</td>
<td>$\div 100$</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>$\times 0.01$</td>
<td>0.04</td>
<td>4</td>
<td>$\div 100$</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>$\times 0.01$</td>
<td>0.03</td>
<td>3</td>
<td>$\div 100$</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>$\times 0.01$</td>
<td>0.02</td>
<td>2</td>
<td>$\div 100$</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>$\times 0.01$</td>
<td>0.01</td>
<td>1</td>
<td>$\div 100$</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Moving Methods of Multiplication

Directions: Find the answers to the problems by finding the partial products. Remember to align the decimals as you would whole numbers before multiplying. When you multiply, work the problem without the decimals. After you add the partial products, count the total amount of numbers after the decimal point in the original expression, and move the decimal point that amount of places to the left in the answer.

4.9 × 2.4
0.9 × 0.03
81 × 8.2

Consider the expression: \(8.5 \times 0.62 \)

Add your partial products here:
6. Consider the expression: 0.89×0.73

Add your partial products here:
Unit 2, Activity 17, Moving Methods of Multiplication with Answers

Name: _________________________ Date: _______________

Moving Methods of Multiplication

Directions: Find the answers to the problems by finding the partial products. Remember to align the decimals as you would whole numbers before multiplying. When you multiply, work the problem without the decimals. After you add the partial products, count the total amount of numbers after the decimal point in the original expression, and move the decimal point that amount of places to the left in the answer.

\[
\begin{array}{c}
4.9 \times 2.4 \\
4.9 \quad 0.26 \\
\times 2.4 \\
160 \quad 4 \times 9 \\
180 \quad 20 \times 9 \\
800 \quad 20 \times 40 \\
196 \\
36 \\
160 \\
180 \\
800 \\
11.76
\end{array}
\]

\[
\begin{array}{c}
0.9 \times 0.03 \\
0.90 \quad 0.09 \\
\times 0.03 \\
270 \\
0 \\
0 \\
270 \\
0.0270
\end{array}
\]

\[
\begin{array}{c}
81 \times 8.2 \\
81 \quad 8.2 \\
\times 8.2 \\
6480 \\
6400 \\
80 \\
80 \times 1 \\
664.2
\end{array}
\]

Directions: Find the answers to the problems by using the area model method. Remember to use the expanded form of the decimals to multiply. Add your partial products in the space provided.

Consider the expression: 8.5 \times 0.62

\[
\begin{array}{c}
8 \\
+ \quad 0.5
\end{array}
\]

\[
\begin{array}{c}
0.60 \\
+ \quad 0.02
\end{array}
\]

\[
\begin{array}{c}
0.60 \times 8 = 4.8 \\
0.02 \times 8 =
\end{array}
\]

Add your partial products here:

\[
\begin{array}{c}
4.80 \\
0.30 \\
0.16 \\
+0.01 \\
5.27
\end{array}
\]

Blackline Masters, Mathematics, Grade 5 Page 2-21
Consider the expression: 0.89×0.73

$$\begin{array}{cc}
0.80 & + \\
0.09 & \\
\hline
0.5600 & 0.063 \\
0.0240 & 0.0027 \\
0.0630 & 0.6497 \\
\hline
0.6497 & \\
\end{array}$$
Unit 3, Activity 1, Graphing Vocabulary

<table>
<thead>
<tr>
<th>Word</th>
<th>+</th>
<th>✓</th>
<th>−</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mark your understanding of each word. A “+” means understands well, a “✓” means some understanding, and a “−” means do not know.

If your understanding changes as the class completes the graphing activities, mark another column. You might begin this unit with a “−” for the word gap, change to a “✓” in the middle of the unit, and finally mark a “+” by the end of the activities. The goal is to have all plusses by the end of the unit.
Unit 3, Activity 2, Spinning Bar Graph Anticipation Guide

Name: _________________________ Date: _______________

Spinning Bar Graph Anticipation Guide Statements

1. Look at Spinner A. Suppose you spin Spinner A 20 times. Red has the best chance of being spun.
 True_____ False______

2. Green has a better chance of being spun over any other color.
 True_____ False______

3. If the spinner is spun clockwise, blue has a better chance of being spun because it is the first color.
 True_____ False______

4. Since red and green are diagonal to each other, they have an equal chance of being spun.
 True_____ False______

5. Yellow is least likely to be spun.
 True_____ False______

6. Each color is equally represented on the spinner.
 Yes_____ No______

7. Each color has an equal chance of being spun.
 True_____ False______
Unit 3, Activity 2, Spinners

Name: _________________________ Date: _______________

Spinner A

Red
Blue

Yellow
Green

Spinner B

Yellow
Red

Blue
Yellow

Red
Yellow
Features of the Graph/Plot

<table>
<thead>
<tr>
<th>Types of Graphs/Plots</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions:
On this word grid the first column has “Types of graphs” listed as the column heading. List the types of graphs studied so far.
List features of the graph in the other columns. This may include “shows trends” “use bars,” or other features.
In each box next to the type of graph, write A for always if the graph always has this feature, S for sometimes if the graph sometimes has this feature, or N for never if the graph never has this feature. Once completed, share your word grid with others and look for differences and similarities among graphs.
Unit 3, Activity 10, Coordinate Grid

Name: _________________________ Date: _______________

[Image of two coordinate grids]
<table>
<thead>
<tr>
<th>Title _______________________</th>
<th>Name _________________</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Coordinate Graphs in the First Quadrant</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Possible Answers</td>
<td></td>
</tr>
<tr>
<td>axis</td>
<td>looks like a number line</td>
</tr>
<tr>
<td></td>
<td>x-axis is a horizontal line</td>
</tr>
<tr>
<td></td>
<td>y-axis is a vertical line</td>
</tr>
<tr>
<td></td>
<td>where the x-axis and y-axis intersect is called the origin</td>
</tr>
<tr>
<td>ordered pairs</td>
<td>pair of numbers that shows the position of a point on a coordinate grid</td>
</tr>
<tr>
<td>coordinates</td>
<td>the numbers in an ordered pair</td>
</tr>
<tr>
<td></td>
<td>x-coordinate is the first number</td>
</tr>
<tr>
<td></td>
<td>y-coordinate is the second number</td>
</tr>
</tbody>
</table>
Unit 3, Activity 11, Plotting Pairs

Name: _________________________ Date: _______________

1.

2.

3.

4.

Blackline Masters, Mathematics, Grade 5 Page 3-9
Unit 4, Activity 2, What about Fractions?

Name: ___________________________ Date: _______________

<table>
<thead>
<tr>
<th>Word/Phrase</th>
<th>+</th>
<th>√</th>
<th>−</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>numerator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>denominator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mixed number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>improper fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>equivalent fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simplest form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mark your understanding of each word. A “+” means understands well, a “√” means some understanding, and a “−” means do not know.

If your understanding changes as the class completes the fraction activities, mark another column. You might begin this unit with a “−” for the phrase simplest form, mark a “√” in the middle of the unit, and then mark a “+” by the end of the activities. The goal is to have all plusses by the end of the unit.
Unit 4, Activity 3, Circle

Name: _________________________ Date: _______________

Blackline Masters, Mathematics, Grade 5
Unit 4, Activity 8, Sample Recipes

Name: _________________________ Date: ________________

Lemonade
1 cup sugar
6 cups cold water
2 cups lemon juice

Hot Chocolate
2 one–ounce squares of sweetened chocolate
1 cup of water
4 cups of milk

Burgers
1 pound of ground beef
2 tablespoons of green pepper
6 tablespoons of onions
3 tablespoons of catsup
1 teaspoon of salt
2 teaspoons of prepared mustard

Grilled Cheese Sandwiches
2 slices of bread
1 slice of cheese
4 pats of butter

Caramel Snappers
144 pecan halves
36 caramels
1 cup of semisweet chocolate

Easy Macaroons
16 ounces of shredded coconut
15 ounces of sweetened condensed milk
2 teaspoons of vanilla
Unit 4, Activity 12, Place Value Chart with Decimals

Name: ___________________________ Date: ________________

<table>
<thead>
<tr>
<th>Ones</th>
<th>•</th>
<th>Decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>hundreds</td>
<td></td>
<td>tenths</td>
</tr>
<tr>
<td>tens</td>
<td></td>
<td>hundredths</td>
</tr>
<tr>
<td>ones</td>
<td></td>
<td>thousandths</td>
</tr>
</tbody>
</table>

Unit 4, Activity 13, Cuisenaire Rods Process Guide

Name: _________________________ Date: _______________

Process Guide: Exploring Fractions with Cuisenaire Rods

1. **Explore**: Arrange the rods in order of length. What do you notice about the “staircase” created?

2. **Examine**: Complete the following questions. Answer the “How do you know?” section in complete sentences.
 a. Begin with the orange rod. Which rod is ½ of the orange rod? ____________
 How do you know?
 b. Which rod is 1/5 of the orange rod? ____________
 How do you know?
 c. Which rod is 1/10 of the orange rod? ____________
 How do you know?
 d. Now use the brown rod. Which rod is ½ of the brown rod? ____________
 How do you know?
 e. Which rod is ¼ of the brown rod? ____________
 How do you know?
Unit 4, Activity 13, Cuisenaire Rods Process Guide

f. Which rod is 1/8 of the brown rod? ______________
 How do you know?

3. Reason and Compare: Complete the following questions. Answer the “How do you know?” section in complete sentences.

 a. Use the light green rod. If the light green rod is 1/3, which rod is the whole? ______________
 How do you know?

 b. If the light green rod is 1/3, which rod is 2/3? ______________
 How do you know?

 c. Use the white rod. If the white rod is 1/5, which rod is the whole? ______________
 How do you know?

 d. If the white rod is 1/5, which rod is 2/5? ______________
 How do you know?

 e. Use the dark green rod. If the dark green rod is 3/4, which rod is the whole? ______________
 How do you know?

 f. If the dark green rod is 2/3, which rod is the whole? ______________
 How do you know?
Unit 4, Activity 13, Cuisenaire Rods Process Guide with Answers

Name: ___________________________ Date: _______________

Process Guide: Exploring Fractions with Cuisenaire Rods (These answers are sample answers using the white rod as the basis for equivalency)

1. **Explore**: Arrange the rods in order of length. What do you notice about the “staircase” created?

 When the rods are arranged in order of length each rod differs from the next by 1 white rod.
 (1 centimeter)

2. **Examine**: Complete the following questions. Answer the “How do you know?” section in complete sentences.

 a. Begin with the orange rod. Which rod is ½ of the orange rod? **Yellow**
 How do you know?
 The orange rod is equal to 10 white rods. The yellow rod is equal to 5 white rods. 5 is ½ of 10.
 Therefore, the yellow rod is ½ of the orange rod.

 b. Which rod is 1/5 of the orange rod? **Red**
 How do you know?
 The orange rod is equal to 10 white rods. The red rod is equal to 2 white rods. 2 is 1/5 of 10
 Therefore, the red rod is 1/5 of the orange rod.

 c. Which rod is 1/10 of the orange rod? **White**
 How do you know?
 Ten white rods are equal to 1 orange rod. Therefore, the white rod is 1/10 of the orange rod.

 d. Now use the brown rod. Which rod is ½ of the brown rod? **purple/pink**
 How do you know?
 8 white rods equal 1 brown rod. 4 white rods equal 1 purple/pink rod. 4 is ½ of 8; therefore, the purple/pink rod is ½ of the brown rod.

 e. Which rod is ¼ of the brown rod? **Red**
 How do you know?
 1 brown rod is equal to 8 white rods. 1 red rod is equal to 2 white rods. 2 is 1/4 of 8. Therefore, the red rod is 1/4 of the brown rod.

 f. Which rod is 1/8 of the brown rod? **White**
 How do you know?
 Eight white rods are equal to 1 brown rod. Therefore, 1 white rod is 1/8 of the brown rod.
3. **Reason and Compare:** Complete the following questions. Answer the “How do you know?” section in complete sentences.

 a. Use the light green rod. If the light green rod is 1/3 of the whole, which rod is the whole? **Blue**
 How do you know?
 3 light green rods equal 1 blue rod.

 b. If the light green rod is 1/3 of the whole, which rod is 2/3? **Dark green**
 How do you know?
 9 white rods would be the whole. 3 white rods are equal to 1 light green rod. 2 light green rods are equal to 1 dark green rod. 1 dark green rod is equal to 6 white rods. 6 is 2/3 of 9; therefore 1 dark green rod is equal to 2/3.

 c. Use the white rod. If the white rod is 1/5 of the whole, which rod is the whole? **Yellow**
 How do you know?
 5 white rods are equal to 1 yellow rod.

 d. If the white rod is 1/5 of the whole, which rod is 2/5? **Red**
 How do you know?
 5 white rods would be the whole. 1 red rod is equal to 2 white rods. 1 red rod is also equal to 2/5.

 e. Use the dark green rod. If the dark green rod is 3/4 of the whole, which rod is the whole? **Brown**
 How do you know?
 1 dark green rod is equal to 6 white rods. 6 is 3/4 of 8. 8 white rods are equal to 1 brown rod.

 f. If the dark green rod is 2/3, which rod is the whole? **Blue**
 How do you know?
 1 dark green rod is equal to 6 white rods. 6 is 2/3 of 9. 1 blue rod is equal to 9.
Unit 4, Activity 16, How Big is the Fraction?

Name: ___________________________ Date: ________________

<table>
<thead>
<tr>
<th>= 0</th>
<th>Between 0 and $\frac{1}{2}$</th>
<th>$= \frac{1}{2}$</th>
<th>Between $\frac{1}{2}$ and 1</th>
<th>$= 1$</th>
<th>Between 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use your protractor to measure the following angles. Tell what type of angle each one is.

1. Ans.

2. Ans.

3. Ans.

4. Ans.

5. Ans.

6. Ans.
Use your protractor to measure the following angles. Tell what type of angle each one is.

1. Ans. \(90^\circ\), right angle
2. Ans. \(150^\circ\), obtuse angle
3. Ans. \(46^\circ\), acute angle
4. Ans. \(11^\circ\), acute angle
5. Ans. \(180^\circ\), straight angle
6. Ans. \(135^\circ\), obtuse angle
Unit 5, Activities 6 and 7, Common Shapes

Name: _________________________ Date: _______________

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

L.

Blackline Masters, Mathematics, Grade 5 Page 5-3
Unit 5, Activity 7, Polygons Anticipation Guide

Name: _________________________ Date: _______________

Polygons Anticipation Guide Statements

1. All shapes can be classified as polygons.
 Yes_____ No______

2. Straight sides classify a shape as a polygon.
 True_____ False______

3. A quadrilateral is a polygon.
 True_____ False______

4. All sides of a quadrilateral must be parallel in order for the shape to be classified as a quadrilateral.
 True_____ False______

5. A trapezoid is a quadrilateral.
 True_____ False______

6. A trapezoid has only one set of parallel sides.
 Yes_____ No______

7. A quadrilateral always has only one set of parallel sides.
 Yes_____ No______

8. Triangles can be trapezoids.
 Yes_____ No______

9. The sides of a triangle will always meet.
 Yes_____ No______

10. A quadrilateral is always a parallelogram.
 Yes_____ No______

11. A rectangle is both a quadrilateral and a parallelogram.
 Yes_____ No______

12. A square is a rectangle.
 Yes_____ No______

13. A square has many names that help classify its shape.
 True_____ False______
14. All shapes can be classified as polygons.
 Yes_____ No X

15. Straight sides classify a shape as a polygon.
 True X False______

16. A quadrilateral is a polygon.
 True X False______

17. All sides of a quadrilateral must be parallel in order for the shape to be classified as a quadrilateral.
 True_____ False X

18. A trapezoid is a quadrilateral.
 True X False______

19. A trapezoid has only one set of parallel sides.
 Yes X No______

20. A quadrilateral always has only one set of parallel sides.
 Yes_____ No X

21. Triangles can be trapezoids.
 Yes_____ No X

22. The sides of a triangle will always meet.
 Yes X No______

23. A quadrilateral is always a parallelogram.
 Yes_____ No X

24. A rectangle is both a quadrilateral and a parallelogram.
 Yes X No______

25. A square is a rectangle.
 Yes X No______

26. A square has many names that help classify its shape.
 True X False______
Unit 5, Activity 8, What Kind of Triangle?

Name: _________________________ Date: _______________

A.

B.

C.

D.

E.

F.
Unit 5, Activity 8, What Kind of Triangle? with Answers

Name: _________________________ Date: _______________

A. Equilateral Triangle
 \[
 \begin{array}{c}
 \text{60°} \\
 \text{6 cm} \\
 \text{6 cm} \\
 \text{6 cm} \\
 \text{60°}
 \end{array}
 \]

B. Obtuse Scalene Triangle
 \[
 \begin{array}{c}
 \text{8 cm} \\
 \text{5 cm} \\
 \text{4 cm} \\
 \text{20°} \\
 \text{30°} \\
 \text{130°}
 \end{array}
 \]

C. Right Scalene Triangle
 \[
 \begin{array}{c}
 \text{5 cm} \\
 \text{9 cm} \\
 \text{7 cm}
 \end{array}
 \]

D. Acute Scalene Triangle
 \[
 \begin{array}{c}
 \text{6 cm} \\
 \text{4 cm} \\
 \text{7 cm}
 \end{array}
 \]

E. Right Isosceles Triangle
 \[
 \begin{array}{c}
 \text{5 cm} \\
 \text{7 cm} \\
 \text{5 cm}
 \end{array}
 \]

F. Obtuse Isosceles Triangle
 \[
 \begin{array}{c}
 \text{8 cm} \\
 \text{26°} \\
 \text{26°} \\
 \text{4 cm}
 \end{array}
 \]

Blackline Masters, Mathematics, Grade 5
Unit 5, Activity 12, Properties of Geometric Figures

Name: _________________________ Date: _______________

<table>
<thead>
<tr>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure</td>
</tr>
</tbody>
</table>

Directions:
On this *word grid* the first column has “figure” listed as the column heading. List the types of figures studied so far.
Think of properties of the geometric figures. This may include “has a right angle,” “has only three sides,” or other features.
In each box next to the type of graph, write A for always if the figure always has this feature, S for sometimes if the figure sometimes has this feature, or N for never if the figure never has this feature. Once completed, share your *word grid* with others and look for differences and similarities among geometric figures.
Unit 5, Activity 14, Plot that Figure

Name: _________________________ Date: _______________

1.

2.

3.

4.
Unit 5, Activity 14, Plot that Figure with Answers

Name: _________________________ Date: _______________

1.

2.

3.

4.
Unit 5, Activity 4, Specific Assessment, Angle Measures

Name: _________________________ Date: _______________

1.
 \[\text{Angle Measure} \]
 \[\text{Type of Angle} \]

2.
 \[\text{Angle Measure} \]
 \[\text{Type of Angle} \]

3.
 \[\text{Angle Measure} \]
 \[\text{Type of Angle} \]

4.
 \[\text{Angle Measure} \]
 \[\text{Type of Angle} \]
1.
 Angle Measure: 134°
 Type of Angle: obtuse

2.
 Angle Measure: 90°
 Type of Angle: right

3.
 Angle Measure: 45°
 Type of Angle: acute

4.
 Angle Measure: 180°
 Type of Angle: straight
Decide which shape does not belong and explain why.

A.

B.

C.
Unit 6, Activity 6, Conversions

Name: _________________________ Date: _______________

<table>
<thead>
<tr>
<th>Object Measured</th>
<th>inches</th>
<th>feet</th>
<th>yards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object Measured</th>
<th>millimeters</th>
<th>centimeters</th>
<th>meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit 6, Activity 7, Tables of Conversions

Name: _________________________ Date: _______________

Length

<table>
<thead>
<tr>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 inches (in.) = 1 foot (ft)</td>
<td>10 millimeters (mm) = 1 centimeter (cm)</td>
</tr>
<tr>
<td>3 feet (ft) = 1 yard (yd)</td>
<td>1000 millimeters (mm) = 1 meter (m)</td>
</tr>
<tr>
<td>5280 feet (ft) = 1 mile</td>
<td>100 centimeters (cm) = 1 meter (m)</td>
</tr>
<tr>
<td></td>
<td>1000 meters (m) = 1 kilometer (km)</td>
</tr>
</tbody>
</table>

Weight/Mass

<table>
<thead>
<tr>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 ounces (oz) = 1 pound (lb)</td>
<td>1000 milligrams (mg) = 1 gram</td>
</tr>
<tr>
<td>2000 pounds (lb) = 1 ton (T)</td>
<td>1000 grams (g) = 1 kilogram (kg)</td>
</tr>
</tbody>
</table>

Capacity

<table>
<thead>
<tr>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 fluid ounces (fl oz) = 1 cup (c)</td>
<td>1000 milliliters (mL) = 1 liter (L)</td>
</tr>
<tr>
<td>2 cups (c) = 1 pint (pt)</td>
<td>1000 liters (L) = 1 kiloliter (kL)</td>
</tr>
<tr>
<td>2 pints (pt) = 1 quart (qt)</td>
<td></td>
</tr>
<tr>
<td>4 quarts (qt) = 1 gallon (gal)</td>
<td></td>
</tr>
</tbody>
</table>

Time

<table>
<thead>
<tr>
<th>U.S.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds (s) = 1 minute (min)</td>
<td></td>
</tr>
<tr>
<td>60 minutes (min) = 1 hour (hr)</td>
<td></td>
</tr>
<tr>
<td>24 hours (hr) = 1 day (d)</td>
<td></td>
</tr>
<tr>
<td>7 days (d) = 1 week (wk)</td>
<td></td>
</tr>
<tr>
<td>about 4 weeks (wk) = 1 month (mo)</td>
<td></td>
</tr>
<tr>
<td>12 months (mo) = 1 year (yr)</td>
<td></td>
</tr>
<tr>
<td>52 weeks (wk) = 1 year (yr)</td>
<td></td>
</tr>
<tr>
<td>365 days (d) = 1 year (yr)</td>
<td></td>
</tr>
</tbody>
</table>
Unit 7, Activity 2, Make That Fraction

<table>
<thead>
<tr>
<th>Description</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A fraction > 1</td>
<td></td>
</tr>
<tr>
<td>2. A fraction in simplest form</td>
<td></td>
</tr>
<tr>
<td>3. A fraction < $\frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td>4. A fraction > $\frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td>5. A fraction equivalent to 1.5</td>
<td></td>
</tr>
<tr>
<td>6. A fraction < 1</td>
<td></td>
</tr>
<tr>
<td>7. A fraction = $\frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td>8. A fraction equivalent to $1\frac{1}{4}$</td>
<td></td>
</tr>
<tr>
<td>9. A fraction = 1</td>
<td></td>
</tr>
<tr>
<td>10. A fraction between 1 and 2</td>
<td></td>
</tr>
</tbody>
</table>
Unit 7, Activity 2, Fractions and Decimals Anticipation Guide Statements

Fractions and Decimals Anticipation Guide Statements

1. All improper fractions are greater than 1.
 True_____ False______

2. One-fourth can be greater than one-half.
 True_____ False______

3. All fractions with denominators of 100 can be written as decimals.
 True_____ False______

4. All improper fractions can only be written as whole numbers.
 True_____ False______

5. Fractions and decimals both indicate parts of a whole.
 True_____ False______
Unit 7, Activity 2, Fractions and Decimals Anticipation Guide Statements with Answers and Explanations

Fractions and Decimals Anticipation Guide Statements

1. All improper fractions are greater than 1.
 True X False
 An improper fraction can be equal to or greater than one. If the numerator of a fraction is equal to or greater than the denominator, the fraction is an improper fraction.

2. One-fourth can be greater than one-half.
 True X False
 The size of the fraction depends on the size of the whole. For instance, in comparing ¼ of a grapefruit to ½ of a grape the fourth of the grapefruit would be larger than the half of a grape. This understanding can help the student see this property of fractions when working with numbers (i.e., ¼ of 40 (10) is greater than ½ of 10 (5).

3. All fractions with denominators of 100 can be written as decimals.
 True X False

4. All improper fractions can only be written as whole numbers.
 True X False
 Improper fractions can be written as a whole number when numerator and the denominator are the same number. But if the numerator is larger than the denominator, the improper fraction is written as a mixed number.

5. Fractions and decimals both indicate parts of a whole.
 True X False
Unit 7, Activity 3, Fraction Spinner

Name: _________________________ Date: _______________

A.

B.

Blackline Masters, Mathematics, Grade 5
Unit 7, Activities 7 and 14, Number Lines

Name: _________________________ Date: _______________

A.

B.

C.

D.
Unit 7, Activity 9, Visually Representing Word Problems

Name: _________________________ Date: _______________

Visually Representing Word Problems

Word Problem One: Sarah and John worked at the ABC Pickle Packing Company. They work on the same shift and tonight, Sarah packed \(\frac{4}{12} \) of the pickles using an automated machine. John packed \(\frac{3}{12} \) of the pickles by hand. How many of the pickles did they pack together?

First Sentence: Sarah and John worked at the ABC Pickle Packing Company.

Second Sentence: They work on the same shift and tonight, Sarah packed \(\frac{4}{12} \) of the pickles using an automated machine.

Third Sentence: John packed \(\frac{3}{12} \) of the pickles by hand.

Word Problem Two: Tamika decided to pick apples from a public orchard a few hours before they closed. She was able to pick \(\frac{9}{10} \) of the amount of apples she wanted before closing. On the way home, she ate \(\frac{3}{10} \) of the apples she picked. How much of the apples did she have left when she returned home?

First Sentence: Tamika decided to pick apples from a public orchard a few hours before they closed.

Second Sentence: She was able to pick \(\frac{9}{10} \) of the amount of apples she wanted before closing.

Third Sentence: On the way home, she ate \(\frac{3}{10} \) of the apples she picked.
Use $\frac{3}{8} + \frac{4}{8}$ to create a word problem: ________________________________

__
__
__

First sentence:
__
__
__

Second Sentence:
__
__
__

Third Sentence:
__
__
__

Use $\frac{4}{5} - \frac{2}{5}$ to create a word problem: ________________________________

__
__
__

First Sentence:
__
__
__

Second Sentence:
__
Unit 7, Activity 9, Visually Representing Word Problems

Third Sentence:

__

__

__

Use $\frac{3}{9} + \frac{7}{9}$ to create a word problem:

__

__

__

First Sentence:

__

__

__

Second Sentence:

__

__

__

Third Sentence:

__

__

__
Visually Representing Word Problems Suggested Answers

Word Problem One: Sarah and John worked at the ABC Pickle Packing Company. They work on the same shift and tonight, Sarah packed $\frac{4}{12}$ of the pickles using an automated machine. John packed $\frac{3}{12}$ of the pickles by hand. How many of the pickles did they pack together?

First Sentence: Sarah and John worked at the ABC Pickle Packing Company.

Sarah and John worked at the pickle company.

Second Sentence: They work on the same shift and tonight, Sarah packed $\frac{4}{12}$ of the pickles using an automated machine.

Sarah picked $\frac{4}{12}$ pickles where she and John worked.

Third Sentence: John packed $\frac{3}{12}$ of the pickles by hand.

Together Sarah and John picked $\frac{4}{12}$ and $\frac{3}{12}$ pickles.

Word Problem Two: Tamika decided to pick apples from a public orchard a few hours before they closed. She was able to pick $\frac{9}{10}$ of the amount of apples she wanted before closing. On the way home, she ate $\frac{3}{10}$ of the apples she picked. How much of the apples did she have left when she returned home?

First Sentence: Tamika decided to pick apples from a public orchard a few hours before they closed.

Tamika decided to pick apples from an orchard.

Second Sentence: She was able to pick $\frac{9}{10}$ of the amount of apples she wanted before closing.

Tamika picked $\frac{9}{10}$ of the apples she wanted before closing.

Third Sentence: On the way home she ate $\frac{3}{10}$ of the apples she picked.

Tamika picked $\frac{9}{10}$ of the apples and ate $\frac{3}{10}$.

Use $\frac{3}{8} + \frac{4}{8}$ to create a word problem: Answers will vary. Problems will show a scenario where the fraction $\frac{3}{8}$ is added to $\frac{4}{8}$.

First sentence:
Unit 7, Activity 9, Visually Representing Word Problems Suggested Answers

Second Sentence:
__

__

Third Sentence:
__
__

Use $\frac{4}{5} - \frac{2}{5}$ to create a word problem: Answers will vary. Problems will show a scenario where the fraction $\frac{4}{5}$ is subtracted from $\frac{2}{5}$.

First Sentence:
__

__

Second Sentence:
__

__

Third Sentence:
__

__

Use $\frac{3}{9} + \frac{7}{9}$ to create a word problem: Answers will vary. Problems will show a scenario where the fraction $\frac{3}{9}$ is added to $\frac{7}{9}$.

First Sentence:
__

__

Second Sentence:
__

__

Third Sentence:
__

__
Unit 7, Activity 12, How Far Is It?

Map A

School

\[\frac{2}{10} \text{ mi.} \]

Store

\[\frac{5}{10} \text{ mi.} \]

Library

\[\frac{3}{10} \text{ mi.} \]

Kathy’s House

Mark’s House

\[\frac{6}{10} \text{ mi.} \]

Map B

Theater

\[\frac{3}{8} \text{ mi.} \]

Park

\[\frac{4}{8} \text{ mi.} \]

Zoo

\[\frac{7}{8} \text{ mi.} \]

Beach

\[\frac{6}{8} \text{ mi.} \]
Use the fractions in the box to find two answers to fit each statement.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>10</th>
<th>2</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

1. A fraction between $\frac{1}{4}$ and $\frac{5}{8}$ ________________

2. A fraction less than $\frac{1}{2}$ ________________

3. Two fractions whose sum is 1 ________________

4. Two fractions whose sum is $1\frac{1}{2}$ ________________

5. Two fractions whose difference is almost 0 ________________

6. Two fractions whose sum is almost 1 ________________

7. Two fractions whose difference is $\frac{3}{8}$ ________________

8. Two fractions whose sum is $\frac{8}{8}$ ________________

9. Two fractions whose difference is $\frac{2}{4}$ ________________

10. Two fractions whose sum is greater than 1 ________________
Unit 7, Activity 13, Who Are We? with Answers

Use the fractions in the box to find two answers to fit each statement.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>10</th>
<th>2</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Sample Answers

1. A fraction between $\frac{1}{4}$ and $\frac{5}{8}$

2. A fraction less than $\frac{1}{2}$

3. Two fractions whose sum is 1

4. Two fractions whose sum is $1\frac{1}{2}$

5. Two fractions whose difference is almost 0

6. Two fractions whose sum is almost 1

7. Two fractions whose difference is $\frac{3}{8}$

8. Two fractions whose sum is $\frac{8}{8}$

9. Two fractions whose difference is $\frac{2}{4}$

10. Two fractions whose sum is greater than 1
1. **Explore:** What would you do to find the area of this rectangle? \((\text{Area} = \text{length} \times \text{width})\)

2. Multiplying \(\frac{4}{5}\) by \(\frac{2}{3}\) will give a product less than \(\frac{4}{5}\). How do you know that this statement is true? Try breaking the rectangle into smaller rectangle sections. You can visualize the area’s being 3 by 5 small rectangles each with a length of \(\frac{1}{5}\) and a width of \(\frac{1}{3}\).

3. **Understand:** Answer the following questions to better understand the process.

 a. Why are the fractions \(\frac{4}{5}\) and \(\frac{2}{3}\) expressed as unit fractions?
Unit 8, Activity 4, Area Model of Multiplication with Fractions

b. Why were 5/5 used for the length and 3/3 used for the width of the large rectangle when 4/5 and 2/3 are the fractions needed?

__
__

__

__

c. Why were only 8 of the 15 smaller rectangles used in the area?

__
__

__

__

d. What is the product? __________

e. Conclusion: How is the Area Model of multiplication used to solve the multiplication with fractions?

__
__

__

4. Apply: Apply the Area Model of multiplication method to solve \(\frac{2}{5} \times \frac{1}{2} \). Use the grid below to solve.

5. Reason: Would multiplying the numerator 2 by the numerator 1 and the denominator 5 by the denominator 2 give the same answer as your area model? Why is this so?

__
__

__
Unit 8, Activity 4, Area Model of Multiplication with Fractions with Answers

Name: _________________________ Date: _______________

Process Guide: Area Model for Fraction by Fraction Multiplication Problems

1. **Explore**: What would you do to find the area of this rectangle? \(\text{Area} = \text{length} \times \text{width}\)

\[
\begin{array}{ccc}
4/5 & & \\
\pm & 2/3 & \\
\end{array}
\]

2. Multiplying 4/5 by 2/3 will give a product less than 4/5. How do you know that this statement is true? Try breaking the rectangle into smaller rectangle sections. You can visualize the area’s being 3 by 5 small rectangles each with a length of 1/5 and a width of 1/3.

\[
\begin{array}{cccccc}
1/5 & 1/5 & 1/5 & 1/5 & 1/5 & \\
\hline
1/3 & 1/15 & & & & \\
1/3 & & & & & \\
1/3 & & & & & \\
\end{array}
\]

Explain: Explain how the smaller rectangle sections of the whole are used to solve the problem.

Each rectangle section represents 1/5 of the length and 1/3 of the width. The fraction 4/5 is expanded into 1/5 + 1/5 + 1/5 + 1/5 and the fraction 2/3 is expanded into 1/3 + 1/3. The area of each of the eight little rectangles is found.

3. **Understand**: Answer the following questions to better understand the process.

 a. How are the fractions 4/5 and 2/3 expressed? Why are they expressed that way?

 The fraction 4/5 and 2/3 are expressed as unit fractions. Each small rectangle is one square unit (1/15) of the whole with an area of 1/5 \(\times\) 1/3.
b. Why were \(\frac{5}{5} \) used for the length and \(\frac{3}{3} \) used for the width of the large rectangle when \(\frac{4}{5} \) and \(\frac{2}{3} \) are the fractions needed?

The area of the grid is one square unit (\(\frac{5}{5} \times \frac{3}{3} \)). \(\frac{4}{5} \) and \(\frac{2}{3} \) represents the square units covered or shaded out of the square unit. Only a \(\frac{4}{5} \times \frac{2}{3} \) square area will be covered or shaded.

c. Why were only 8 of the 15 smaller rectangles used in the area?

The 15 rectangles represent the whole square unit. Only 8 of the rectangles represent \(\frac{4}{5} \times \frac{2}{3} \).

d. What is the product? \(\frac{8}{15} \)

e. Conclusion: How is the Area Model of multiplication used to solve the multiplication with fractions?

The Area Model of multiplication visually shows how much a fraction represents.

\(\frac{2}{3} \times \frac{4}{5} \) is represented by \(\frac{8}{15} \) of the whole.

4. Apply: Apply the Area Model of multiplication method to solve \(\frac{2}{5} \times \frac{1}{2} \). Use the grid below to solve.

\[
\begin{array}{cccccc}
\frac{2}{5} \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \\
\end{array}
\]

\(\frac{2}{5} \times \frac{1}{2} = \frac{2}{10} = \frac{1}{5} \)

5. Reason: Would multiplying the numerator 2 by the numerator 1 and the denominator 5 by the denominator 2 give the same answer as your area model? Why is this so?

Multiplying \(\frac{2}{5} \times \frac{1}{2} \) by multiplying the numerator by numerator and denominator by denominator will give the same answer as the area model.
Unit 8, Activity 5, Grid Paper
Unit 8, Activity 6, More Area Model of Multiplication

Area Model for Whole Number by Fraction Multiplication Problems

1. Example: \(2 \times \frac{2}{3} = ?\)

 \[\begin{array}{c}
 2 \\
 \frac{2}{3}
 \end{array}\]

 Multiplying 2 and \(\frac{2}{3}\) will give a product less than 2. First, the rectangle is divided into 2 equal rectangles vertically, representing the number 2. Next, the two rectangles are divided into thirds by drawing horizontal lines to create three sections. This will make 6 equal sections, 3 sections in each rectangle. Each section is \(\frac{1}{3}\) of each rectangle. Two of the thirds are shaded on both rectangles to represent \(\frac{2}{3}\) of 2 or \(\frac{4}{3}\).

 \[\begin{array}{c|c|c|c}
 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
 \hline
 \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
 \end{array}\]

2. Try It: \(6 \times \frac{3}{4} = \) ________________
3. **Problem:** $5 \times \frac{4}{5} =$

4. **Example:** $2 \frac{1}{2}$ groups of $3\frac{1}{2} = ?$

 Multiplying $2 \frac{1}{2}$ and $3 \frac{1}{2}$ will give a product greater than 6. First, the large rectangle is divided into 4 rectangles vertically. Next, the large rectangle is divided into three rectangles horizontally. This will make 12 sections. The third section in the fourth vertical column is divided in half to represent the $\frac{1}{2}$ of $3 \frac{1}{2}$. The sections in the third horizontal column are divided in half to represent the $\frac{1}{2}$ of $2 \frac{1}{2}$. Notice, the last section in the rectangle has been divided into fourths. Three of the four squares are shaded horizontally along with $\frac{1}{2}$ of the fourth square. Two of the three squares are shaded vertically along with $\frac{1}{2}$ of the third square. This will give 6 whole sections, 5 half sections, and $\frac{1}{4}$ section. ($6 + \frac{5}{2} + \frac{1}{4} = 8 \frac{3}{4}$).
Unit 8, Activity 6, More Area Model of Multiplication

5. Try It: \(\frac{2}{3} \times 4 \frac{1}{2} = \) ________________

6. Problem: \(3 \frac{3}{4} \times 5 \frac{2}{5} = \) ________________
Unit 8, Activity 6, More Area Model of Multiplication with Answers

Area Model for Whole Number by Fraction Multiplication Problems

1. **Example:** \(2 \times \frac{2}{3} = ?\)

 \[
 \begin{array}{c}
 2 \\
 \frac{2}{3}
 \end{array}
 \]

 Multiplying 2 and \(\frac{2}{3}\) will give a product less than 2. First, the rectangle is divided into 2 equal rectangles vertically, representing the number 2. Next, the two rectangles are divided into thirds by drawing horizontal lines to create three sections. This will make 6 equal sections, 3 sections in each rectangle. Each section is \(\frac{1}{3}\) of each rectangle. Two of the thirds are shaded on both rectangles to represent \(\frac{2}{3}\) of 2 or \(\frac{4}{3}\).

2. **Try It:** \(6 \times \frac{3}{4} = \frac{4}{2} \quad (\text{Model shows 18/4})\)

3. **Problem:** \(5 \times \frac{4}{5} = \frac{20}{5} \quad (\text{Model shows 20/5})\)

Area Model for Mixed Number by Mixed Number Multiplication Problems

4. **Example:** \(2 \frac{1}{2} \text{ groups of } 3 \frac{1}{2} = ?\)

\[
\begin{array}{c}
2 \frac{1}{2} \\
\frac{1}{2}
\end{array}
\]
Unit 8, Activity 6, More Area Model of Multiplication with Answers

Multiplying 2 ½ and 3 ½ will give a product greater than 6. First, the rectangle is divided into 4 sections vertically. Next, the rectangle is divided into three sections horizontally. This will make 12 unit squares. The squares in the fourth vertical column are divided in half to represent the ½ of 3 ½. The squares in the third horizontal column are divided in half to represent the ½ of 2 ½.

Notice, the last square in the rectangle has been divided into fourths. Three of the four squares are shaded horizontally along with ½ of the fourth square. Two of the three squares are shaded vertically along with ½ of the third square. Other squares are shaded to fill in the area. This will give 6 whole sections, 5 half sections, and ¼. (6 + 5/2 + ¼ = 8 ¾).

5. Try: 2 1/3 × 4 ½ = 10 ½ (Model shows 8 + 4/3 + 2/2 +1/6)

6. Try: 3 ¼ × 5 2/5 = 17 11/20 (Model shows 15 + 5/4 +6/5+ 2/20)
Unit 8, Activity12, The Plot Thickens, Creating Line Plots

Name: _________________________ Date: __________________

The Plot Thickens, Creating Line Plots

Directions: You are an active character in these stories! Use what you know about creating line plots to create line plots needed to continue the story. Complete all your work in the time given and listen carefully to see how the story ends.

First Story: Mr. Johnston owns a small apartment complex. He is considering building a recreational area and wants to know if a playground area or an arcade would be better to build. He gathered the ages of the children and now needs help in displaying them. The approximate ages in years of the 20 children in the building are 13, 1, 5, 8, 7, 1, 0, 12, 10, 9, 1, 5, 5, 13, 6, 8, 16, 2, 3, 0. He wants to understand the results he collected, but doesn’t want to spend time creating bar or circle graphs. He is sure a line graph would not work. You suggest that he create a line plot and help him do so.

Sort your data.

Title: ____________________________________

Title: ________________________________
Second Story: Cullen, the citrus seller, heard from Mr. Johnston that you are very good with creating line plots. He had created two line plots showing his inventory in the store after his latest Bag of Fruit sale. He is not sure which one is correct. He asks you to analyze his data, look at the graphs, and tell him which one is correct. His data showed three \(\frac{3}{4} \) lb. bags, four \(\frac{1}{2} \) lb. bags, and five \(\frac{1}{8} \) lb. bags.

1. Help Cullen find out how many bags of fruit he sold altogether. He started with 10 bags.

2. Help Cullen find the total amount of fruit in pounds for the \(\frac{1}{8} \) pound bags that are left.

3. Are there at least 2 pounds of fruit left in the \(\frac{1}{2} \) pound bags of fruit? Help Cullen find out.

4. Find out if there is less than 1 pound left in the \(\frac{3}{4} \) pound bags. If so, you can take them home.

Directions: You are an active character in these stories! Use what you know about creating line plots to create line plots needed to continue the story. Complete all your work in the time given and listen carefully to see how the story ends.

First Story: Mr. Johnston owns a small apartment complex. He would like to know the ages of the children in the building. The ages in years of the 20 children in the building are 13, 1, 5, 8, 7, 1, 0, 12, 10, 9, 1, 5, 5, 13, 6, 8, 16, 2, 3, 0. He wants to understand the results he collected but does not want to spend time creating bar or circle graphs. He is sure a line graph will not work. You suggested he create a line plot and helped him do so.

Sort your data.
0, 0, 1, 1, 1, 2, 3, 5, 5, 5, 6, 7, 8, 8, 9, 10, 12, 13, 13, and 16

Ages of Children in Mr. Johnston's Apartment Complex

Second Story: Cullen, the citrus seller, heard from Mr. Johnston that you were very good with creating line plots. He created two line plots showing inventory on display in his store after his latest Bag of Fruit sale. He was not sure which one was correct. He asked you to analyze his data, look at the graphs, and tell him which one was correct. His data showed three \(\frac{1}{4} \) lb. bag, four \(\frac{1}{2} \) lb. bag, and five \(\frac{1}{8} \) lb. bag.

Correct? Yes Correct? No
1. Help Cullen find out how many bags of fruit he sold altogether (12 bags).
2. Help Cullen find the total amount of fruit in pounds for the 1/8 pound bags that are left (5/8 pound).
3. Are there at least 2 pounds of fruit left in the ½ pound bags of fruit? Help Cullen find out. (Yes, there are 2 pound of fruit.)
4. Find out if there is less than 1 pound left in the ¼ pound bags. If so, you can take them home. (There is ¾ of a pound left, so you get to take those bags home.)